DRD TECHNOLOGY

Elevate Circuit Analysis with ANSYS Nexxim Circuit

Bryce Goswick, Application Engineer

April 1, 2025

Background Project Overview LTspice Nexxim Circuit Results Comparison

Background

- Why use Schematic Tools?
 - Circuit Design
 - Operational Verification
 - Fast Structural Analyses
- SPICE was first circuit simulation tool
- Many different versions: ISPICE, LTSPICE, HSPICE, PSPICE, XSPICE, NGSPICE, etc.
- Virtually all Electrical Engineers have used SPICE

February 2011

The state of the second st

Advantages of Nexxim Circuit

Project Overview

• Construct Two-Stage Operation Amplifier with the following specs:

100uA

5pF

30pF

1000kΩ

5V

- Gain @ 1kHz 40dB >
- Unity Gain Freq 50kHz >

 \equiv

- 45° • Phase Margin >
- Gain Margin 10dB >
- Quiescent Current \cong
- Output Capacitor \equiv
- VDD =
- Compensation Cap <
- Compensation Res <
- MOSFET model
- Variables:
 - W/L Values
 - Compensation C/R

Procedure

LTspice:

- Create subcircuit topology
- Use .model to assign MOSFET model
- Assign W/L and C/R with .param definitions
- Use hierarchy to create subcircuit symbol
- Apply input and output components
- Configure analysis
- Choose nodes to plot

Nexxim:

- Create subcircuit topology
- Use model blocks to assign MOSFET model
- Assign W/L and C/R with project variables
- Use hierarchy to create subcircuit symbol
- Apply input and output components
- Configure analysis and parametric sweep
- Choose nodes to plot
- (optional) Optimize for known specs

LTspice Circuit

- Walkthrough of setup:
- Defining Models
- Defining Parameters
- Settings up Analyses
- Post Processing

Defining Models and Parameters

LTspice - [Project2-Walkthrough.asc]

File Edit Hierarchy View Simulate Tools Window Help

Nexxim Circuit

- Walkthrough of setup:
- Defining Model Blocks
- Defining Project Parameters
- Settings up Analyses
- Optimization and Parameterization
- Post Processing

Defining Models and Parameters

Nexxim Circuit

April 1, 2025

Results

LTspice Uncompensated:

Nexxim Circuit Uncompensated:

Results

LTspice Compensated:

Nexxim Circuit Compensated:

Optimetrics

- Multiple Optimization Schemes
- Define Optimization Functions and Goals
- Assign Importance with Weight
- Minimized Dimensions and Compensation R and C

Setup Optimization					×
Goals Variables Ger	eral Options				
Optimizer: Multi-	Objective Genetic Algorithm(Random-search) Setup				
Estimated Variations:	1100				
Cost Function:					
Calc. Solution	Calculation	Calc. Range	Condition	Goal	Weight
LinearFrequency	Gainat1kHz	Freq(1Hz:1GHz)	>=	[40]	[10]
LinearFrequency	UnityGainFreq	Freq(1Hz:1GHz)	>=	[50000]	[10]
LinearFrequency	PhaseMargin	Freq(1Hz:1GHz)	>=	[45]	[10]
LinearFrequency	gainmargin	Freq(1Hz:1GHz)	>=	[10]	[10]
LinearFrequency	Minimization	Freq(1Hz:1GHz)	<=	[5]	[1]
Setup Calculations	Delete				
Acceptable Cost 0	Noise: 0.0001 Stop on satisfy Acceptable Cost		5	how Adva	nced Options
Edit Variables V HPC	and Analysis Options		0	к	Cancel

Screening(Search-based) Multi-Objective Genetic Algorithm(Random-search) Nonlinear Programming by Quadratic Lagrangian(Gradient) Mixed-Integer Sequential Quadratic Programming(Gradient and Discrete) Adaptive Multiple-Objective(Random Search) Adaptive Single-Objective(Gradient) Merit-based Sequential Quadratic Programming(Gradient) MATLAB ----- Legacy ------Sequential Nonlinear Programming(Gradient) Sequential Mixed Integer NonLinear Programming(Gradient and Discrete) Quasi Newton(Gradient) Pattern Search(Search-based) Genetic Algorithm(Random search)

Cance OK

Optimized Nexxim Circuit:

- LTspice and Nexxim agree
- Optimetrics found an optimal setup

	LTspice	Nexxim Circuit	Nexxim Optimetrics
Gain @1kHz	45.73 dB	45.73 dB	51.27 dB
Unity Gain Frequency	7.06 MHz	7.06 MHz	14.91 MHz
Gain Margin	55.49 dB	53.91 dB	56.66 dB
Phase Margin	121.75°	121.77°	100.96°

Initial:	
Variable	Value
Wp	0.5u
Wn	ใน
Lp	ใน
Ln	ใน
Сс	20p
Rc	50k

Optimized:

Variable	Value
Wp	0.54u
Wn	0.61u
Lp	0.51u
Ln	0.52u
Сс	1.15p
Rc	52.92k

DRD

Comparison

- SPICE:
 - Transient and Frequency Domain
 - DC sweep
 - Basic Circuit Analysis
- Nexxim Circuit:
 - Transient and Frequency Domain
 - DC Analysis
 - Signal Integrity Analysis
 - Resonant Analysis
 - Structure Blocks (trace models, via models, etc.)
 - Cosimulation with FEM analysis
 - Parameterization/Optimization of Circuits

LTspice:

P	🤈 Config	ure Analysis					:	×
	Transient	AC Analysis	DC sweep	Noise	DC Transfer	DC op pnt	Transient Frequency Response	

Nexxim:

DC Analysis
Linear Network Analysis
Oscillator Resonant Frequency Search
Oscillator Analysis (1-Tone)
Oscillator Analysis (N-Tone)
Transient Analysis
TV Noise Analysis
Envelope Analysis
Periodic Transfer Function (PXF)
VerifEye (Statistical Eye) Analysis
Quick Eye Analysis
AMI Analysis
Harmonic Balance (1-Tone)
Harmonic Balance (N-Tone)
System Frequency Domain Analysis

Conclusion

- Nexxim Circuit has all the capabilities of LTspice plus more:
 - Additional Analyses options
 - Parameterization of subcircuits
 - Optimization of designs
- Applications of Nexxim Circuit:
 - Signal Integrity
 - Bit-Error-Rate
 - Transmitter/Receiver Circuit Link Performance
 - Resonant Search
 - Time-Varying Noise Analysis
 - Circuit Matching with Smith Tool
 - FEM Co-simulation
 - Parametrization of Components
- Nexxim Circuit is included in <u>every</u> Ansys Electronics Package

How to Simulate within Nexxim Circuit

