

Simulating Liquid Sprays: Applications Across Industries

Ted Sperry Ph.D. – CFD Applications Engineer

Technical Support Contact Information

<u>Support:</u> (918) 743-3013 x1 <u>support@drd.com</u>

Or through our website at <u>www.drd.com</u>

I have had over 40 years of experience working with DRD Technology and have been very satisfied with them through the years.

- David Stribling, P.E. Owner, Buffalo Hump Solutions

Introduction

- What are "sprays" in this context?
- Liquid sprays are common yet complex phenomenon
- Application specific outcomes are more difficult to predict
- How can we model sprays with Fluent CFD?

Osta, Anu. (2022). Imaging Diagnostics for Jet Breakup into Droplets: A Review. 10.5772/intechopen.107370.

3

Applications

Automotive and Aerospace Engineering

Fuel injection systems

De-icing fluid sprays

Windshield washer/wiper optimization

Industrial Processes

Spray painting and coatings Cooling systems

Spray drying

Agriculture

Pesticide and herbicide spray drift Irrigation spray distribution efficiency

Consumer Products

Perfume and deodorant dispersion

Cleaning product coverage and surface interaction

Environmental Engineering

Odor control spray dispersion in waste treatment Dust suppression in mining and construction sites

Fire Safety and Suppression

Water spray patterns from sprinkler systems Fine mist and aerosol fire extinguishing systems

Medical and Pharmaceutical Applications

Aerosol delivery from inhalers Nasal spray for drug delivery

Tablet coating during manufacturing

DRD

4

Ansys Fluent Spray Modeling Methods

Accurate spray specification is the key for successful modeling of spray dependent applications!

Eulerian Multiphase Approach	Eulerian Wall Film (EWF)	Volume of Fluid (VOF)	Discrete Phase Model (DPM)	VOF-to-DPM
Phases treated as mixture with averaged density	Two- dimensional film model for wall surfaces	Resolves all scales of liquid structures directly	Calibrate droplet properties from measurements	Intact liquid core and ligaments use VOF
Able to handle large droplet counts	Interactions with VOF and DPM easy to define	VERY computationally expensive	Use droplet data as input for the simulation	Droplets use Lagrangian tracking

VOF-DPM Hybrid Modeling for Sprays

Dynamic Mesh Adaption

Mesh Refinement

Resolves gas-liquid interface Travels with the interface

Mesh continuously refined with moving interface

Mesh Coarsening

Resolved liquid drops transition to DPM Removes unnecessary refinement

Dynamic Mesh Adaption has preset configurations for VOF simulations but can also be configured for any other field variables that require high refinement for local gradients.

Mesh coarsened after interface advected away from mesh cell, or conversion of VOF to DPM

6/3/2025

Eulerian Wall Film (EWF)

Film Thickness

- Lightweight model for thin liquid flows
- Treats the liquid as a 2D surface film with thickness
- Can be paired with other models to model different regimes in different regions of a simulation

Bottling line cleaning process

Injected water (DPM)

Film Thickness (EWF)

Pressure Swirl Atomizer Case Comparison

- Comparing spray patterns for two nozzle geometries
- Nozzles spray into 300mm cube of air
- All other settings identical

6/3/2025

Dynamic Meshing

- Polyhedral-hexahedral with dynamic Mesh Adaption to capture interfaces accurately
- Reduces computational load by only refining mesh only where interfaces exist
- Dynamic adaption has customizable refinement and coarsening criteria for multiphase flows

10

Simulation Configuration

- Volume of Fluid (VOF) Model for free interface flows
- Implicit formulation to allow larger timestep size
- K-Omega turbulence model, various application-specific models available
- Compressive Scheme with Interfacial anti-diffusion
- CSF Surface tension model

Models Phases Phase Interaction	n Population Balance Model	
Model	Hybrid Models	Number of Eulerian Phases
 Off Homogeneous Models: Volume of Fluid Mixture Wet Steam 	Coupled Level Set + VOF	2
Eulerian		
OF Sub-Models	Volume Fraction Parameters	Options
Innomogeneous Models: Eulerian VOF Sub-Models Open Channel Flow	Volume Fraction Parameters Formulation	Options Interface Modeling
Organization of the second se	Volume Fraction Parameters Formulation	Options Interface Modeling Type

Viscous Model
Model
○ Inviscid
🔿 Laminar
🔿 Spalart-Allmaras (1 eqn)
🔿 k-epsilon (2 eqn)
• k-omega (2 eqn)
 Transition k-kl-omega (3 eqn)
Transition SST (4 eqn)
 Reynolds Stress (7 eqn)
Scale-Adaptive Simulation (SAS)
 Detached Eddy Simulation (DES)
 Large Eddy Simulation (LES)
k-omega Model
○ Standard
О деко
O BSL
• SST
○ WJ-BSL-EARSM
k-omega Options
Low-Re Corrections
Near-Wall Treatment
correlation 👻
Options

Curvature Correction Corner Flow Correction Production Kato-Launder Production Limiter

11

6/3/2025

Pressure Swirl Atomizer Animations

- Comparing spray patterns for two nozzle geometries with identical settings
- Simulation durations of 0.25 seconds

Pressure Swirl Atomizer Post-Processing

- Spray pattern outputs can be visualized as an animation or surface/volume rendering
- Ligament formation and primary breakup can be observed

Pressure Swirl Atomizer Results

• Spray pattern outputs at midplane for each case:

Normalized

Normalized Mass Flux 1.00e+00 6.31e-02 3.98e-03 2.51e-04 1.58e-05 1.00e-06 6.31e-08 3.98e-09 2.51e-10 1.58e-11 1.00e-12

6/3/2025

14

Post Processing Outputs

Parametric Analysis Options

- Operating conditions such as inlet pressure or velocity can be easily varied and compared
- Comparisons for Heat Transfer Coefficients, Lubrication, etc.
- Geometric changes possible via Ansys Workbench

Note: This animation is for illustration purposes of HTC prediction was created with SPH simulation, not via the VOF model presented earlier.

- Primary breakup can be modeled effectively by models available in Ansys Fluent
- Volume of Fluid method can effectively analyze changes in spray patterns due to nozzle geometries
- More information on multiphase flows is available from DRD as well as Ansys Learning Hub

Any questions from the audience?

